
Solvation energy of ions and dipoles in a finite number of solvent shells

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 6185

(http://iopscience.iop.org/0953-8984/8/34/008)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 6185–6190. Printed in the UK

Solvation energy of ions and dipoles in a finite number of
solvent shells

Ranko Richert
Max-Planck-Institut f̈ur Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

Received 22 April 1996, in final form 6 June 1996

Abstract. The contributions of a polar solvent in thermodynamic equilibrium to the solvation
free energy of a dipole and of an ion are estimated analytically as functions of distance within the
framework of the mean-spherical approximation theory and compared to the analogous results
derived from simple electrostatical arguments. For equal-sized solute and solvent molecules,
accumulating 90% of the total energy in media of moderate polarity involves∼1 and∼7 solvent
shells for dipole and ion solvation, respectively. For solvents characterized by high values of
ε only upper bounds for the energy relevant to the solvent range can be stated. Relative to the
continuum picture, the MSA calculation predicts an increase of the coupling range by∼50%,
without a significant dependence on the dielectric constantε.

1. Introduction

The solvation free energyE associated with a dipole or an ion in an equilibrium polar fluid
is an important quantity as regards processes which involve the motion or redistribution of
charge. Examples are solvent effects on emission and absorption spectra of chromophores
[1–4], electron transfer reactions [5], ion solvation [6], chemical reactions in fluid media
[2], and charge transport phenomena in dielectric materials [7, 8]. Within the classical
approach, this Born energy is a simple function of the static dielectric constantε and refers
to a dipolar or ionic hard-sphere solute embedded in a dielectric continuum. Calculations of
the quantityE, especiallyE(ε), are crucial for quantifying the Stokes shifts of chromophoric
solute molecules following their electronic excitation [9, 10]. Provided that a substantial
change in the dipole momentµ occurs upon excitation, a polar medium will give rise to
solvation dynamics on time-scales of the orientational dielectric relaxation. Recent detailed
studies of these effects have unambiguously demonstrated that the simple continuum model
for characterizing the solvent is inappropriate [10–16]. An attractive alternative is the
mean-spherical approximation (MSA) theory, which relates the solvation free energy of
hard-sphere dipoles or ions of solute diameterD to a solvent consisting of hard-sphere
dipoles with diameterd and leading to a dielectric constantε [17, 18]. The results of this
liquid theory have proven to yield satisfactory coincidence with experimental data for the
ε-dependence of inhomogeneous optical lineshapes as well as for the impact of the dielectric
relaxation functionε∗(ω) on time-resolved Stokes-shift dynamics [10–16].

In the context of the above solvation processes, it is often desirable to have an estimate
on the number of solvent shells responsible for the bulk of the solvation free energy. Due
to the different radial decay behaviours of the electric fields, this extent of the relevant
amount of solvent around the solute is expected to differ for dipolar and ionic solvation.
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BecauseE(ε) in the continuum limit disregards any solvent structure, its range of coupling
to the solvent must remainε-invariant. However, the MSA formalism involves the solvent
structure in terms ofE(ε, D, d), whereD andd represent the solute and solvent molecular
diameters, respectively. As a consequence, the relevant coupling ranges emerging from the
MSA can be expected to depend on the dielectric constantε, and, secondly, to differ from
the continuum results.

The scope of the present work is to obtain estimates on the solvation free energyE as a
function of the number of solvent shells surrounding the solute for the dipolar and the ionic
case. We begin with simple electrostatical arguments in favour of the limited spatial extent
of the free energies of solvation in a disordered dielectric continuum. In the following, after
stating the solution from the MSA forE(ε, D, d), it will be shown how a cut-off diameter
x > D for the solvent can be included in the formalism. Since the MSA yields solutions
only for the infinitely extended solvent, screening effects of the inner solvent shell have
to be disregarded, so this method tends to result in upper bounds for the spatial coupling
ranges. Results are obtained for the dipole and ion solvation energies in media of various
polarities and compared to the continuum limit analogue.

2. Method and results

2.1. Simple electrostatics

According to basic electrostatics [19], the electric fieldE of a point-sized particle with
chargeq1 and dipole momentµ1 is

E(r) = q1r0r
−2 − µ1r

−3 + 3(µ1 · r0)r0r
−3 (1)

where the particle 1 is assumed to be positioned at the origin and withr = rr0. Being
interested only in the radial dependence of the interaction energiesw, we restrict the
following consideration to the equatorial plane with respect toµ1, i.e. to the cases where
µ1 · r0 = 0. The interaction energy of a dipole possessing a permanent momentµ2 with
the fieldE(r) is given byw = −µ2 ·E(r). For the case of a central dipole we thus obtain
wµ−µ ∼ (µ1 · µ2)r

−3, and for the central-charge casewq−µ ∼ q1(µ2 · r0)r
−2.

The goal of this section is to obtain a simple approach to the relevant spatial range for
the solvation energy of a dipole or an ion embedded in an equilibrium polar fluid, i.e. in
a continuum-like environment of dipoles. In order to obtain the interaction energy related
to a central dipole in a solvent shell of radiusr of solvent dipoles, the ensemble average
〈wdip〉 has to be taken. At a certain distancer from the central dipole the numberN
of solvent dipoles increases asr2, i.e. as the surface area of a sphere with radiusr. As
outlined above, the radial dependence of a dipole field varies asr−3. For an equilibrium
configuration we have〈wdip〉 = −NµE〈cosθ〉, with 〈cosθ〉 being the ensemble average
as regards the various orientations of dipoles with respect to the field of the central dipole.
For non-interacting dipoles the Boltzmann distribution leads to〈cosθ〉 = µE/3kT and
thus 〈wdip〉 = −Nµ2E2(3kT )−1, with N ∼ r2 andE ∼ r−3. Therefore, the total distance
dependence leads to〈wdip〉 ∼r−4 for a solute dipole centred in a spherical shell of radiusr

of equilibrium solvent dipoles. For the situation of a charge or ion in the centre the field
varies asE ∼ r−2, so〈wion〉 ∼ r−2. If screening effects are ignored, i.e. for solvents of little
polarity, integration from the solute radiusr = D/2 up to the distancer = x of the above
results for〈w〉 yields the energy〈W 〉 = ∫ 〈w〉 dr related to the entire solvent within the
radiusx. For the radial dependence the results for〈W 〉 are〈Wdip〉 ∼ x−3 and〈Wion〉 ∼ x−1.

As is obvious from the above, the fast convergence of〈W 〉 with x is intimately linked to
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Figure 1. The normalized free energy of solvation,1dip(x), for a dipole in a polar fluid is
plotted as a function of the solvent cut-offx in units of the solute diameterD. In the order
from the upper to the lower lines, the curves refer to the continuum limitd = 0 (dashed line),
and to the MSA withd = D (solid lines) for dielectric constantsε − 1 = 100, 10, and 1. The
inner scale counts solvent shells.

Figure 2. The normalized free energy of solvation,1ion(x), for an ion in a polar fluid is plotted
as a function of the solvent cut-offx in units of the solute diameterD. In the order from the
upper to lower lines, the curves refer to the continuum limitd = 0 (dashed line), and to the
MSA with d = D (solid lines) for dielectric constantsε − 1 = 100, 10, and 1. The inner scale
counts solvent shells.

the assumption of an equilibrium fluid-like solvent, such that the radial decay ofE enters as
E2 (∼E〈cosθ〉) in the final result. For a crystalline counterpart structure of solvent dipoles
〈cosθ〉 will not decrease withr as doesE, which leads to relatively excessive coupling
ranges as regards the interaction energy. The interaction energies calculated above quantify
the work required to assemble the solvent around the central particle, dipole or ion, which
is equivalent to the work related to placing the particle into the equilibrium solvent.〈W 〉 at
x → ∞ is therefore a measure for the free energy of solvation in the case of non-interacting
solvent dipoles and disregarding the effects of field screening by intermediate solvent shells.
The graphs for〈Wdip〉 ∼ x−3 and〈Wion〉 ∼ x−1 are included as dashed lines in figures 1 and
2, respectively, after normalization to〈W 〉 = 0 at x = D/2 and to〈W 〉 = 1 for x → ∞.
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2.2. MSA solutions

The model under study consists of a solute represented by a hard sphere of diameterD

and solvent molecules represented by point dipoles centred in hard spheres of diameterd.
Depending on the case of interest, indexed ‘dip’ or ‘ion’, the solute contains either a point
dipole of momentµ or a charge of amountq. For this model of a spatially infinite solvent,
the MSA integral equation has been solved to yield [17, 18]

Edip(D) = [βµ2/4πε0D
3]αdip(ε, D, d) (2a)

αdip(ε, D, d) = 8(ε − 1)

2uR3ρ3 + 2ε[1 + R(1 − 2u)]3 + [1 + Rρ]3
(2b)

ρ = (1 − u)/(1 − 2u) u = 3ξ/(1 + 4ξ) (2c)

whereβ, R, andξ are given by

β ≡ (kBT )−1 R = d/D (3a)

ξ = 1
2[1 − 9[4 + f 1/3 + f −1/3]−1] (3b)

f = 1 + 54ε1/2[1 − [1 + 1/(27ε1/2)]1/2]. (3c)

The analogue for the ionic case reads

Eion(D) = [βq2/4πε0D]αion(ε, D, d) (4a)

αion(ε, D, d) = [1 − 1/ε]

[
1 + R

1 − 2ξ

1 + 4ξ

]−1

(4b)

whereβ, R, andξ are again given by equation (3). SI units are employed in the r.h.s. of
equations (2a) and (4a). In the continuum limit, which is obtained ford = 0, the classical
resultsEdip(D) = (βµ2/4πε0D

3)8(ε − 1)/(2ε + 1) andEion(D) = (βq2/4πε0D)(1− 1/ε)

are restored by equations (2) and (4), respectively.
Consider now the role of the solute diameterD within this hard-sphere model. Since

the solute cavity is assumed to carry zero polarizability, the only effect of increasingD

from D1 → D2 is to replace the polar medium in the rangeD1–D2 by vacuum, i.e. by
ε = 1. E(x) is thus the contribution from solvent molecules outside the diameterx > D

felt by the solute of diameterD, in the absenceof the first (x/D − 1)/2 solvent shells.
This absence suppresses the shielding of the electric field by the inner(x/D − 1)/2 solvent
shells, actually characterized by a dielectric constantε instead of 1. For small values of
ε, E(x) = E′(x), whereE′(x) reflects the contribution toE of the solvent outsidex in
the presenceof the inner shells. Larger values ofε lead toE′(x) < E(x), so E(x) can
be regarded as an upper limit in this case. We can now quantify the complement ofE(x)

related to the solvent within the rangeD–x by E(D)−E(x), whereE(x) stands forEdip(x)

or Eion(x), whichever is appropriate. Being interested in the spatial dependence only, we
further normalize the result and define1(x) = [E(D) − E(x)]/E(D), i.e.

1dip(x) = 1 − Edip(x)/Edip(D) x > D (5a)

1ion(x) = 1 − Eion(x)/Eion(D) x > D. (5b)

In the continuum limit,d = 0, the functions1(x) no longer depend onε and reduce to the
simple expressions1dip(x) = 1 − (x/D)−3 and 1ion(x) = 1 − (x/D)−1. The calculated
results of equation (5),1dip(x) and 1ion(x), are shown graphically in figures 1 and 2,
respectively, for the range 16 x/D 6 10 and for the cased = D using the values
ε − 1 = 1, 10, and 100, and for the continuum modeld = 0. Note that for the dipole case
in figure 1,1dip(x) ≈ 1 for x = 3D already, and thatx/D = 3 refers toonesolvent shell
only as indicated by the inner scale of figure 1.
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3. Discussion

The equilibrium solvent modelled within the framework of the MSA is composed of
interacting dipoles. In the continuum limit,d = 0, the MSA approach yields identical
results for the spatial scale effects on the solvation energy, as does the initial approach
based on simple electrostatical arguments. Therefore, disregarding the interaction among
solvent dipoles in the continuum limit appears to be irrelevant in the present context. A
limitation inherent in both methods of calculation is the necessity of disregarding the effect
of the field of the central particle at some distance being decreased by the screening due
to the presence of the intermediate solvent. In reality, outer solvent shells will therefore
contribute less to the solvation energy than expected on the basis of the above results.

Table 1. The solvent cut-off diameterx90% (in units of the solute diameterD) for which 90%
of the solvation energy is preserved. The values ofx/D are calculated for dipolar and ionic
solvation in materials of various polarities in terms ofε − 1. The results for 06 ε − 1 6 ∞
are obtained using the MSA equations (1)–(3) assumingd = D. The continuum limit atd = 0
is independent ofε.

ε − 1 → 0 1 10 100 → ∞ d = 0

Dipolar 3.31 3.21 2.90 2.61 2.40 2.16
Ionic 19.0 17.6 15.1 13.2 11.9 10.0

In order to demonstrate the extent of finite-size effects on the solvation free energy, table
1 compiles data forx90% (in units ofD) at which1(x) = 90% of the total normalized energy
1(∞) = 1 is accumulated from solvent contributions in the spatial rangeD–x. These results
indicate that (i) no strong dependence onε is found in the experimentally relevant range
2 6 ε 6 100, (ii) the MSA results are≈50% in excess of the continuum values, and (iii)
the diameter beyond which only 10% of the contribution toE is disregarded is≈5 times
higher for ionic solvation compared to the dipolar case. The numbers of solvent shells
related to these data is given bys = (x/D − 1)/2, and the numbern of solvent molecules
involved isn = [(x/D)3 −D3]/d3. According to the above notions,E(x) for ε � 1 serves
as an upper limit forE′(x), whereE′(x) designates the contribution of the solvent outside
the diameterx to the solvation energy in the presence of solvent molecules withinD–x.
For a strongly polar system,ε � 1, thex90%-data in table 1 should therefore be regarded as
upper bounds for the solvent ranges relevant for 90% of the solvation energy. Within the
point-dipole/hard-sphere model underlying the MSA, a strict lower bound forx90% is 2D,
or in generalD + d for arbitraryd 6= D, because no solvent dipole resides within a sphere
of diameterD + d around the solute origin. Therefore, the real valuesx90%/D for dipole
solvation in solvents of strong polarity have only little uncertainty, e.g. 26 x90%/D 6 2.9
for ε − 1 = 10.

The implications of these calculations are that the bulk (90%) of the solvation energy
is dominated by≈1 and ≈7 solvent shells for dipolar and ionic solvation, respectively,
for solvents of moderate polarity. For media of higher polarity, the relevant number of
solvent shells is decreased further. These values are≈ 50% in excess of what is expected
on the basis of the continuum dielectric approach. It should be noted that the present
results concur well with those obtained by Papazyan and Maroncelli [15, 16] employing
detailed simulations of solvation in Brownian dipole lattices, where the contribution of
distinct solvent shells toE in the presence of the remaining solvent is calculated.

In the light of the prediction that no more than≈1 solvent shell entirely dictates the
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solvation free energy in the dipolar case, it is not trivial that equation (2) as an input
to statistical mechanical calculations leads to predictions of the inhomogeneous optical
lineshapes of chromophores [9] which are strongly confirmed by experimental data [10].
As a consequence, it may be concluded that the dielectric properties in the immediate vicinity
of a dipolar solute are not disturbed significantly by the presence of the solute molecule,
provided thatD ≈ d. In contrast, ionic solutes can give rise to dielectric saturation [15]
and electrostriction within the nearest-neighbour solvent molecules.

A further interesting implication of this strongly limited coupling range regarding the
solvation energy of dipolar solutes concerns Stokes-shift dynamics experiments in liquids
confined to mesopores of dielectrically inactive porous glasses. In this context, it follows
that geometrical confinement of the liquid to pore diameters as small as≈D + 2d will
have only little effect on the extent of the total Stokes shift1ν = ν(t = 0) − ν(t = ∞).
Recent experiments [20] on time-resolved solvation dynamics of the dipolar probe molecule
quinoxaline in the supercooled solvent 2-methyltetrahydrofuran in porous sol–gel glasses
with average pore sizes 2.5, 5.0, and 7.5 nm directly confirm these expectations. An
analogous notion holds for empirical polarity scales based on solvatochromic effects, which
are known to be governed mainly by electrostatical interactions [21]. According to the
present results, a spectroscopically determined measure for the solvent polarity will refer
only to the immediate vicinity of the chromophore, which might be especially important for
mesoscopically heterogeneous materials.

References

[1] Maroncelli M 1993J. Mol. Liq. 57 1
[2] Reichardt C 1988Solvents and Solvent Effects in Organic Chemistry(Weinheim: VCH)
[3] Barbara P F 1988Acc. Chem. Res.21 195
[4] Richert R 1994Disorder Effects on Relaxational Processesed R Richert and A Blumen (Berlin: Springer)
[5] Kosower E M and Huppert D 1986Annu. Rev. Chem. Phys.37 127
[6] Marcus Y 1985Ion Solvation(Chichester: Wiley)
[7] Young R H and Fitzgerald J J 1995J. Phys. Chem.99 4230
[8] Richert R and Loring R F 1995J. Phys. Chem.99 17 265
[9] Loring R F 1990J. Phys. Chem.94 513

[10] Richert R and Wagener A 1993J. Phys. Chem.97 3146
[11] Zhou H-X, Bagchi B, Papazyan A and Maroncelli M 1992J. Chem. Phys.97 9311
[12] Rips I, Klafter J and Jortner J 1988J. Phys. Chem.88 3246
[13] Rips I, Klafter J and Jortner J 1988J. Phys. Chem.89 4288
[14] Richert R, Stickel F, Fee R S and Maroncelli M 1994Chem. Phys. Lett.229 302
[15] Papazyan A and Maroncelli M 1991J. Chem. Phys.95 9219
[16] Papazyan A and Maroncelli M 1995J. Chem. Phys.102 2888
[17] Wertheim M S 1971J. Chem. Phys.55 4291
[18] Chan D Y C, Mitchell D J and Ninham B W 1979J. Chem. Phys.70 2946
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